An Ontology-based Multi-level Robot Architecture for Learning from Experiences
نویسندگان
چکیده
One way to improve the robustness and flexibility of robot performance is to let the robot learn from its experiences. In this paper, we describe the architecture and knowledge-representation framework for a service robot being developed in the EU project RACE, and present examples illustrating how learning from experiences will be achieved. As a unique innovative feature, the framework combines memory records of low-level robot activities with ontology-based high-level semantic descriptions.
منابع مشابه
Query Architecture Expansion in Web Using Fuzzy Multi Domain Ontology
Due to the increasing web, there are many challenges to establish a general framework for data mining and retrieving structured data from the Web. Creating an ontology is a step towards solving this problem. The ontology raises the main entity and the concept of any data in data mining. In this paper, we tried to propose a method for applying the "meaning" of the search system, But the problem ...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملA Q-learning Based Continuous Tuning of Fuzzy Wall Tracking
A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...
متن کاملJoint Goal Human Robot collaboration-From Remembering to Inferring
The ability to infer goals , consequences of one’s own and others’ actions is a critical desirable feature for robots to truly become our companions-thereby opening up applications in several domains. This article proposes the viewpoint that the ability to remember our own past experiences based on present context enables us to infer future consequences of both our actions/goals and observed ac...
متن کاملLearning issues in a multi-modal robot-instruction scenario
One of the challenges for the realization of future intelligent robots is to design architectures which make user instruction of work tasks by interactive demonstration effective and convenient. A key prerequisite for enhancement of robot learning beyond the level of low-level skill acquisition is situated multi-modal communication. Currently, most existing robot platforms still have to advance...
متن کامل